N-compact frames
Schlitt, Greg M.
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991), p. 173-187 / Harvested from Czech Digital Mathematics Library

We investigate notions of $\Bbb N$-compactness for frames. We find that the analogues of equivalent conditions defining $\Bbb N$-compact spaces are no longer equivalent in the frame context. Indeed, the closed quotients of frame `$\Bbb N$-cubes' are exactly 0-dimensional Lindelöf frames, whereas those frames which satisfy a property based on the ultrafilter condition for spatial $\Bbb N$-compactness form a much larger class, and better embody what `$\Bbb N$-compact frames' should be. This latter property is expressible without reference to maximal ideals or filters. We construct the co-reflections for both of the classes, (the `$\Bbb N$-compactifications'), which both restrict to the spatial $\Bbb N$-compactification.

Publié le : 1991-01-01
Classification:  06A23,  06D20,  06D99,  18B30,  54A05,  54D20
@article{116953,
     author = {Greg M. Schlitt},
     title = {N-compact frames},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {32},
     year = {1991},
     pages = {173-187},
     zbl = {0747.06009},
     mrnumber = {1118300},
     language = {en},
     url = {http://dml.mathdoc.fr/item/116953}
}
Schlitt, Greg M. N-compact frames. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) pp. 173-187. http://gdmltest.u-ga.fr/item/116953/

Banaschewski B. Über nulldimensionale Räume, Math. Nachr. 13 (1955), 129-140. (1955) | MR 0086287 | Zbl 0064.41303

Banaschewski B. Universal 0-dimensional compactifications, preprint.

Banaschewski B.; Mulvey C. Stone-Čech compactification of locales I, Houston Journal of Mathematics 6 (1980), 301-311. (1980) | MR 0597771 | Zbl 0473.54026

Chew K.P. A characterization of $\Bbb N$-compact spaces, Proc. Amer. Math. Soc. 26 (1970), 679-682. (1970) | MR 0267534

Dowker C.H.; Strauss D. Sums in the category of frames, Houston Journal of Mathematics 3 (1976), 17-32. (1976) | MR 0442900 | Zbl 0332.54005

Eda K.; Ohta H. On Abelian Groups of Integer-Valued Continuous Functions, their $\Bbb Z$-duals and $\Bbb Z$-reflexivity, In Abelian Group Theory, Proc. of Third Conf., Oberwolfach. Gordon & Breach Science Publishers, 1987. | MR 1011316

Engelking R.; Mrówka S. On E-compact spaces, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 6 (1958), 429-436. (1958) | MR 0097042

Herrlich H. $\frak E$-kompakte Räume, Math.Zeitschr. 96 (1967), 228-255. (1967) | MR 0205218

Jech T. Set Theory, Academic Press, New York-London, 1978. | MR 0506523 | Zbl 1007.03002

Johnstone P.T. The point of pointless topology, Bull. Amer. Math. Soc. 8 (1983), 41-53. (1983) | MR 0682820 | Zbl 0499.54002

Johnstone P.T. Stone Spaces, Cambridge Studies in Advanced Mathematics 3, Cambridge University Press, 1982. | MR 0698074 | Zbl 0586.54001

Kelley J.L. The Tychonoff product theorem implies the axiom of choice, Fund. Math. 37 (1950), 75-76. (1950) | MR 0039982 | Zbl 0039.28202

Madden J.; Vermeer J. Lindelöf locales and realcompactness, Math. Proc. Camb. Phil. Soc. (1986), 437-480. (1986) | Zbl 0603.54021

Mrówka S. Structures of continuous functions III, Verh. Nederl. Akad. Weten., Sectl I, 68 (1965), 74-82. (1965) | MR 0237580

Mrówka S. Structures of continuous functions VIII, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 20 (1972), 563-566. (1972) | MR 0313987

Schlitt G. The Lindelöf-Tychonoff theorem and choice principles, to appear. | MR 1104601 | Zbl 0737.03024

Steen L.A.; Seebach J.A. Counterexamples in Topology, Holt, Rinehart & Wilson, 1970 (Second edition by Springer-Verlag, 1978). | MR 0507446 | Zbl 0386.54001

Vermeulen H.J. Doctoral Diss., University of Sussex, 1987.