On FU($p$)-spaces and $p$-sequential spaces
García-Ferreira, Salvador
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991), p. 161-171 / Harvested from Czech Digital Mathematics Library

Following Kombarov we say that $X$ is $p$-sequential, for $p\in\alpha^\ast$, if for every non-closed subset $A$ of $X$ there is $f\in{}^\alpha X$ such that $f(\alpha)\subseteq A$ and $\bar f(p)\in X\backslash A$. This suggests the following definition due to Comfort and Savchenko, independently: $X$ is a {\rm FU($p$)}-space if for every $A\subseteq X$ and every $x\in A^{-}$ there is a function $f\in {}^\alpha A$ such that $\bar f(p)=x$. It is not hard to see that $p \leq {\,_{\operatorname{RK}}} q$ ($\leq {\,_{\operatorname{RK}}}$ denotes the Rudin--Keisler order) $\Leftrightarrow $ every $p$-sequential space is $q$-sequential $\Leftrightarrow $ every {\rm FU($p$)}-space is a {\rm FU($q$)}-space. We generalize the spaces $S_n$ to construct examples of $p$-sequential (for $p\in U(\alpha )$) spaces which are not {\rm FU($p$)}-spaces. We slightly improve a result of Boldjiev and Malykhin by proving that every $p$-sequential (Tychonoff) space is a {\rm FU($q$)}-space $\Leftrightarrow \forall \nu <\omega _1 (p^\nu \leq {\,_{\operatorname{RK}}} q)$, for $p,q \in \omega ^\ast $; and $S_n$ is a {\rm FU($p$)}-space for $p\in \omega ^\ast $ and $1

Publié le : 1991-01-01
Classification:  03E05,  04A20,  54A25,  54D55,  54D99
@article{116952,
     author = {Salvador Garc\'\i a-Ferreira},
     title = {On FU($p$)-spaces and $p$-sequential spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {32},
     year = {1991},
     pages = {161-171},
     zbl = {0789.54032},
     mrnumber = {1118299},
     language = {en},
     url = {http://dml.mathdoc.fr/item/116952}
}
García-Ferreira, Salvador. On FU($p$)-spaces and $p$-sequential spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) pp. 161-171. http://gdmltest.u-ga.fr/item/116952/

Arhangel'Skii A.V. Martin's axiom and the construction of homogeneous bicompacta of countable tightness, Soviet Math. Dokl. 17 (1976), 256-260. (1976)

Arhangel'Skii A.V.; Franklin S.P. Ordinal invariants for topological spaces, Michigan Math. J. 15 (1968), 313-320. (1968) | MR 0240767

Balogh Z. On compact Hausdorff spaces of countable tightness, Proc. Amer. Math. Soc. 105 (1989), 755-764. (1989) | MR 0930252 | Zbl 0687.54006

Bernstein A.R. A new kind of compactness for topological spaces, Fund. Math. 66 (1970), 185-193. (1970) | MR 0251697 | Zbl 0198.55401

Boldjiev B.; Malykhin V. The sequentiality is equivalent to the $\Cal F$-Fréchet-Urysohn property, Comment. Math. Univ. Carolinae 31 (1990), 23-25. (1990) | MR 1056166 | Zbl 0696.54020

Booth D.D. Ultrafilters on a countable set, Ann. Math. Logic 2 (1970), 1-24. (1970) | MR 0277371 | Zbl 0231.02067

Comfort W.W. Ultrafilters: some old and some new results, Bull. Amer. Math. Soc. 83 (1977), 417-455. (1977) | MR 0454893

Comfort W.W.; Negrepontis S. On families of large oscillation, Fund. Math. 75 (1972), 275-290. (1972) | MR 0305343 | Zbl 0235.54005

Comfort W.W.; Negrepontis S. The Theory of Ultrafilters, Grundlehren der Mathematischen Wissenschaften Vol. 211, Springer-Verlag, 1974. | MR 0396267 | Zbl 0298.02004

Fedorčuk V.V. Fully closed mappings and the compatibility of some theorems of general topology with the axioms of set-theory, Math. USSR Sbornik 28 (1976), 1-26. (1976)

Garcia-Ferreira S. Various Orderings on the Space of Ultrafilters, Doctoral Dissertation, Wesleyan University, 1990.

Garcia-Ferreira S. Three Orderings on $\beta (ømega)\setminus ømega $, preprint. | MR 1227550 | Zbl 0791.54032

Kombarov A.P. On a theorem of A. H. Stone, Soviet Math. Dokl. 27 (1983), 544-547. (1983) | Zbl 0531.54007

Kombarov A.P. Compactness and sequentiality with respect to a set of ultrafilters, Moscow Univ. Math. Bull. 40 (1985), 15-18. (1985) | MR 0814266 | Zbl 0602.54025

Mills Ch. An easier proof of the Shelah $P$-point independence theorem, Rapport 78, Wiskundig Seminarium, Free University of Amsterdam.

Savchenko I.A. Convergence with respect to ultrafilters and the collective normality of products, Moscow Univ. Math. Bull. 43 (1988), 45-47. (1988) | MR 0938072 | Zbl 0687.54004

Wimmers E.L. The Shelah $P$-point independence theorem, Israel J. Math. 43 (1982), 28-48. (1982) | MR 0728877 | Zbl 0511.03022