The spaces for which each $\delta$-continuous function can be extended to a $2\delta$-small point-open l.s.c\. multifunction (resp. point-closed u.s.c\. multifunction) are studied. Some sufficient conditions and counterexamples are given.
@article{116951, author = {Alessandro Fedeli and Jan Pelant}, title = {On $\delta $-continuous selections of small multifunctions and covering properties}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {32}, year = {1991}, pages = {155-159}, zbl = {0734.54010}, mrnumber = {1118298}, language = {en}, url = {http://dml.mathdoc.fr/item/116951} }
Fedeli, Alessandro; Pelant, Jan. On $\delta $-continuous selections of small multifunctions and covering properties. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) pp. 155-159. http://gdmltest.u-ga.fr/item/116951/
Orthocompactness and perfect mappings, Proc. Amer. Math. Soc. 79 (1980), 484-486. (1980) | MR 0567998 | Zbl 0433.54005
Covering properties, Chapter 9 of Handbook of set-theoretic topology, edited by K. Kunen and J.E. Vaughan, Elsevier Science Publishers, B.V., North Holland, 1984, 347-422. | MR 0776628 | Zbl 0569.54022
On closed images of orthocompact spaces, Proc. Amer. Math. Soc. 77 (1979), 389-394. (1979) | MR 0545602 | Zbl 0422.54013
Stability of the fixed point theory, Colloq. Math. 8 (1961), 43-46. (1961) | MR 0126261
On the proximate fixed point property for multifunctions, Colloq. Math. 19 (1968), 245-250. (1968) | MR 0227968 | Zbl 0181.26203
$\delta $-continuous selections of small multifunctions, Can. J. Math. XXIV, (4) (1972), 631-635. (1972) | MR 0300255 | Zbl 0219.54012
A note on $\delta $-continuity and proximate fixed points for multi-valued functions, Proc Amer. Math. Soc. 23 (1969), 256-260. (1969) | MR 0248774 | Zbl 0183.27703