Uniform Bounds for the Bilinear Hilbert Transforms, II
Rev. Mat. Iberoamericana, Tome 22 (2006) no. 2, p. 1069-1126 / Harvested from Project Euclid
We continue the investigation initiated in [Grafakos and Li: Uniform bounds for the bilinear Hilbert transforms, I. Ann. of Math. (2) 159 (2004), 889-933] of uniform $L^{p}$ bounds for the family of bilinear Hilbert transforms $$ H_{\alpha,\beta} (f,g)(x) = \text{p.v.} \displaystyle\int_{\mathbb{R}} f(x-\alpha t) g(x-\beta t) \frac{dt}{t} \,. $$ In this work we show that $H_{\alpha,\beta}$ map $L^{p_1}(\mathbb R)\times L^{p_2}(\mathbb R)$ into $L^p(\mathbb R)$ uniformly in the real parameters $\alpha$, $\beta$ satisfying $|\frac{\alpha}{\beta}-1|\ge c > 0$ when $1 < p_1, p_2 < 2$ and $\frac{2}{3} < p= \frac{p_1p_2}{p_1+p_2} < \infty$. As a corollary we obtain $L^p \times L^\infty \to L^p$ uniform bounds in the range $4/3 < p < 4 $ for the $H_{1,\alpha}$'s when $\alpha\in [0,1)$.
Publié le : 2006-12-14
Classification:  time-frequency analysis,  bilinear Hilbert transform,  uniform bounds,  42B20,  42B25,  46B70,  47B38
@article{1169480040,
     author = {Li
,  
Xiaochun},
     title = {Uniform Bounds for the Bilinear Hilbert Transforms, II},
     journal = {Rev. Mat. Iberoamericana},
     volume = {22},
     number = {2},
     year = {2006},
     pages = { 1069-1126},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1169480040}
}
Li
,  
Xiaochun. Uniform Bounds for the Bilinear Hilbert Transforms, II. Rev. Mat. Iberoamericana, Tome 22 (2006) no. 2, pp.  1069-1126. http://gdmltest.u-ga.fr/item/1169480040/