A geometry on the space of probabilities II. Projective spaces and exponential families
Rev. Mat. Iberoamericana, Tome 22 (2006) no. 2, p. 833-849 / Harvested from Project Euclid
In this note we continue a theme taken up in part I, see [Gzyl and Recht: The geometry on the class of probabilities I: The finite dimensional case. Rev. Mat. Iberoamericana 22 (2006), 545-558.], namely to provide a geometric interpretation of exponential families as end points of geodesics of a non-metric connection in a function space. For that we characterize the space of probability densities as a projective space in the class of strictly positive functions, and these will be regarded as a homogeneous reductive space in the class of all bounded complex valued functions. We shall develop everything in a generic $\mathcal{C}^*$-algebra setting, but shall have the function space model in mind.
Publié le : 2006-12-14
Classification:  $C^*$-algebra,  reductive homogeneous space,  lifting of geodesics,  exponential families,  maximum entropy method,  46L05,  53C05,  53C56,  60B99,  60E05,  53C30,  32M99,  62A25,  94A17
@article{1169480032,
     author = {Gzyl
,  
Henryk and Recht
,  
L\'azaro},
     title = {A geometry on the space of probabilities II. Projective spaces and exponential families},
     journal = {Rev. Mat. Iberoamericana},
     volume = {22},
     number = {2},
     year = {2006},
     pages = { 833-849},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1169480032}
}
Gzyl
,  
Henryk; Recht
,  
Lázaro. A geometry on the space of probabilities II. Projective spaces and exponential families. Rev. Mat. Iberoamericana, Tome 22 (2006) no. 2, pp.  833-849. http://gdmltest.u-ga.fr/item/1169480032/