We study the appropriate versions of parabolicity stochastic completeness
and related Liouville properties for a general class of operators which
include the $p$-Laplace operator, and the non linear singular operators in
non-diagonal form considered by J. Serrin and collaborators.
Publié le : 2006-12-14
Classification:
non-linear potential theory,
$p$-Laplacian type operators,
Riemannian manifolds,
31C12,
53C21,
58J05
@article{1169480031,
author = {Pigola
,
Stefano and Rigoli
,
Marco and Setti
,
Alberto G.},
title = {Some non-linear function theoretic properties of Riemannian manifolds},
journal = {Rev. Mat. Iberoamericana},
volume = {22},
number = {2},
year = {2006},
pages = { 801-831},
language = {en},
url = {http://dml.mathdoc.fr/item/1169480031}
}
Pigola
,
Stefano; Rigoli
,
Marco; Setti
,
Alberto G. Some non-linear function theoretic properties of Riemannian manifolds. Rev. Mat. Iberoamericana, Tome 22 (2006) no. 2, pp. 801-831. http://gdmltest.u-ga.fr/item/1169480031/