We consider signed Radon random measures on a separable, complete and locally compact metric space and study mean quadratic convergence with respect to vague topology on the space of measures. We prove sufficient conditions in order to obtain mean quadratic convergence. These results are based on some identification properties of signed Radon measures on the product space, also proved in this paper.
@article{116948, author = {Pierre Jacob and Paulo Eduardo Oliveira}, title = {Mean quadratic convergence of signed random measures}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {32}, year = {1991}, pages = {119-123}, zbl = {0731.60030}, mrnumber = {1118295}, language = {en}, url = {http://dml.mathdoc.fr/item/116948} }
Jacob, Pierre; Oliveira, Paulo Eduardo. Mean quadratic convergence of signed random measures. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) pp. 119-123. http://gdmltest.u-ga.fr/item/116948/
Convergence of Probability Measures, John Wiley & Sons, 1968. | MR 0233396 | Zbl 0944.60003
Contribution à l'étude des mesures aléatoires du second ordre, Thèse du 3$^{ {ème}}$ cycle, Université des Sciences et Techniques de Lille I, 1983.
Measure Theory, D. Van Nostrand Co. Inc., Princeton, New Jersey, 1950. | MR 0033869 | Zbl 0283.28001
Convergence uniforme à distance finie de mesures signées, Ann. Inst. Henri Poincaré, 15 (1979), n$^{ o}$4, 355-373. (1979) | MR 0567733 | Zbl 0439.60006
Random Measures, Academic Press, 1976. | MR 0431373 | Zbl 0694.60030
Espaços métricos, Projecto Euclides, IMPA, Rio de Janeiro, 1983. | Zbl 0529.54001
Mesures et Probabilités, Enseignement des Sciences, Hermann, Paris, 1974. | MR 0486378 | Zbl 0306.28001
Convergence de suite de mesures et convergence des masses, Pub. IRMA, Lille, 13 (1988), II. (1988)
Calcul des probabilités et introduction aux processus aléatoires, Masson, Paris, 1971. | MR 0375403 | Zbl 0212.49201
Measures on Topological Spaces, Transl. of Ame. Math. Soc., Series 2, 48 (1965), 161-228. (1965)