We consider partial orderings for stochastic processes induced by expectations of convex or increasing convex (concave or increasing concave) functionals. We prove that these orderings are implied by the analogous finite dimensional orderings.
@article{116947, author = {Bruno Bassan and Marco Scarsini}, title = {Convex orderings for stochastic processes}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {32}, year = {1991}, pages = {115-118}, zbl = {0731.60048}, mrnumber = {1118294}, language = {en}, url = {http://dml.mathdoc.fr/item/116947} }
Bassan, Bruno; Scarsini, Marco. Convex orderings for stochastic processes. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) pp. 115-118. http://gdmltest.u-ga.fr/item/116947/
Comparison Methods for Queues and Other Stochastic Models, Wiley, New York, 1983. | MR 0754339 | Zbl 0536.60085
Stochastic inequalities on partially ordered spaces, Annals of Probability 5 (1977), 899-912. (1977) | MR 0494447 | Zbl 0371.60013
Association of probability measures on partially ordered spaces, Journal of Multivariate Analysis 26 (1988), 111-132. (1988) | MR 0963827 | Zbl 0655.60005