Limiting behavior of global attractors for singularly perturbed beam equations with strong damping
Ševčovič, Daniel
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991), p. 45-60 / Harvested from Czech Digital Mathematics Library

The limiting behavior of global attractors $\Cal A_\varepsilon $ for singularly perturbed beam equations $$\varepsilon^2 \frac{\partial^2u}{\partial t^2}+ \varepsilon\delta \frac{\partial u}{\partial t}+A \frac{\partial u}{\partial t}+\alpha Au+g(\|u\|_{1/4}^2)A^{1/2}u=0 $$ is investigated. It is shown that for any neighborhood $\Cal U$ of $\Cal A_0$ the set $\Cal A_\varepsilon$ is included in $\Cal U$ for $\varepsilon$ small.

Publié le : 1991-01-01
Classification:  35B25,  35B40,  35Q20,  35Q72,  37C70,  47H20,  73K05,  74H45,  74K10
@article{116942,
     author = {Daniel \v Sev\v covi\v c},
     title = {Limiting behavior of global attractors  for singularly perturbed beam equations  with strong damping},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {32},
     year = {1991},
     pages = {45-60},
     zbl = {0741.35089},
     mrnumber = {1118289},
     language = {en},
     url = {http://dml.mathdoc.fr/item/116942}
}
Ševčovič, Daniel. Limiting behavior of global attractors  for singularly perturbed beam equations  with strong damping. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) pp. 45-60. http://gdmltest.u-ga.fr/item/116942/

Babin A.B.; Vishik M.N. Attraktory evolucionnych uravnenij s častnymi proizvodnymi i ocenki ich razmernosti (in Russian), Uspechi mat. nauk 38 (1983), 133-185. (1983) | MR 0710119

Ball J.M. Initial-boundary value problems for an extensible beam, J. Math. Anal. Appl. 42 (1973), 61-96. (1973) | MR 0319440 | Zbl 0254.73042

Ball J.M. Stability theory for an extensible beam, J. of Diff. Equations 14 (1973), 399-418. (1973) | MR 0331921 | Zbl 0247.73054

Chow S.-N.; Lu K. Invariant manifolds for flows in Banach spaces, J. of Diff. Equations 74 (1988), 285-317. (1988) | MR 0952900 | Zbl 0691.58034

Fitzgibbon W.E. Strongly damped quasilinear evolution equations, J. of Math. Anal. Appl. 79 (1981), 536-550. (1981) | MR 0606499 | Zbl 0476.35040

Ghidaglia J.M.; Temam R. Attractors for damped nonlinear hyperbolic equations, J. de Math. Pures et Appl. 79 (1987), 273-319. (1987) | MR 0913856 | Zbl 0572.35071

Henry D. Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math. 840, Springer Verlag. | MR 0610244 | Zbl 0663.35001

Hale J.K.; Rougel G. Upper semicontinuity of an attractor for a singularly perturbed hyperbolic equations, J. of Diff. Equations 73 (1988), 197-215. (1988) | MR 0943939

Hale J.K.; Rougel G. Lower semicontinuity of an attractor for a singularly perturbed hyperbolic equations, Journal of Dynamics and Diff. Equations 2 (1990), 16-69. (1990) | MR 1041197

Massat P. Limiting behavior for strongly damped nonlinear wave equations, J. of Diff. Equations 48 (1983), 334-349. (1983) | MR 0702424

Massat P. Attractivity properties of $\alpha $-contractions, J. of Diff. Equations 48 (1983), 326-333. (1983) | MR 0702423