We prove a stronger form, $A^+$, of a consistency result, $A$, due to Eklof and Shelah. $A^+$ concerns extension properties of modules over non-left perfect rings. We also show (in ZFC) that $A$ does not hold for left perfect rings.
@article{116939, author = {Jan Trlifaj}, title = {Non-perfect rings and a theorem of Eklof and Shelah}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {32}, year = {1991}, pages = {27-32}, zbl = {0742.16001}, mrnumber = {1118286}, language = {en}, url = {http://dml.mathdoc.fr/item/116939} }
Trlifaj, Jan. Non-perfect rings and a theorem of Eklof and Shelah. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) pp. 27-32. http://gdmltest.u-ga.fr/item/116939/
Rings and Categories of Modules, Springer, New York 1974. | MR 0417223 | Zbl 0765.16001
Set Theoretic Methods in Homological Algebra and Abelian Groups, Montreal Univ. Press, Montreal 1980. | MR 0565449 | Zbl 0669.03022
On Whitehead modules, preprint 1990. | MR 1127077 | Zbl 0743.16004
Diamonds, uniformization, J. Symbolic Logic 49 (1984), 1022-1033. (1984) | MR 0771774 | Zbl 0598.03044
Von Neumann regular rings and the Whitehead property of modules, Comment. Math. Univ. Carolinae 31 (1990), 621-625. (1990) | MR 1091359 | Zbl 0728.16005
Associative Rings and the Whitehead Property of Modules, R. Fischer, Munich 1990. | MR 1053965 | Zbl 0697.16024