Non-perfect rings and a theorem of Eklof and Shelah
Trlifaj, Jan
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991), p. 27-32 / Harvested from Czech Digital Mathematics Library

We prove a stronger form, $A^+$, of a consistency result, $A$, due to Eklof and Shelah. $A^+$ concerns extension properties of modules over non-left perfect rings. We also show (in ZFC) that $A$ does not hold for left perfect rings.

Publié le : 1991-01-01
Classification:  03E55,  16A50,  16A51,  16D40,  16L30
@article{116939,
     author = {Jan Trlifaj},
     title = {Non-perfect rings and a theorem of Eklof and Shelah},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {32},
     year = {1991},
     pages = {27-32},
     zbl = {0742.16001},
     mrnumber = {1118286},
     language = {en},
     url = {http://dml.mathdoc.fr/item/116939}
}
Trlifaj, Jan. Non-perfect rings and a theorem of Eklof and Shelah. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) pp. 27-32. http://gdmltest.u-ga.fr/item/116939/

Anderson F.W.; Fuller K.R. Rings and Categories of Modules, Springer, New York 1974. | MR 0417223 | Zbl 0765.16001

Eklof P.C. Set Theoretic Methods in Homological Algebra and Abelian Groups, Montreal Univ. Press, Montreal 1980. | MR 0565449 | Zbl 0669.03022

Eklof P.C.; Shelah S. On Whitehead modules, preprint 1990. | MR 1127077 | Zbl 0743.16004

Shelah S. Diamonds, uniformization, J. Symbolic Logic 49 (1984), 1022-1033. (1984) | MR 0771774 | Zbl 0598.03044

Trlifaj J. Von Neumann regular rings and the Whitehead property of modules, Comment. Math. Univ. Carolinae 31 (1990), 621-625. (1990) | MR 1091359 | Zbl 0728.16005

Trlifaj J. Associative Rings and the Whitehead Property of Modules, R. Fischer, Munich 1990. | MR 1053965 | Zbl 0697.16024