$m$-medial $n$-quasigroups
Kepka, Tomáš
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991), p. 9-14 / Harvested from Czech Digital Mathematics Library

For $n\geq 4$, every $n$-medial $n$-quasigroup is medial. If $1\leq m

Publié le : 1991-01-01
Classification:  20N05,  20N15
@article{116937,
     author = {Tom\'a\v s Kepka},
     title = {$m$-medial $n$-quasigroups},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {32},
     year = {1991},
     pages = {9-14},
     zbl = {0736.20044},
     mrnumber = {1118284},
     language = {en},
     url = {http://dml.mathdoc.fr/item/116937}
}
Kepka, Tomáš. $m$-medial $n$-quasigroups. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) pp. 9-14. http://gdmltest.u-ga.fr/item/116937/

Bénéteau L. Free commutative Moufang loops and anticommutative graded rings, J. Algebra 67 (1980), 1-35. (1980) | MR 0595016

Bénéteau L. Une classe particulière de matroïdes parfaits, Annals of Discr. Math. 8 (1980), 229-232. (1980) | MR 0597178

Bénéteau L.; Kepka T.; Lacaze J. Small finite trimedial quasigroups, Commun. Algebra 14 (1986), 1067-1090. (1986) | MR 0837271

Bol G. Gewebe und Gruppen, Math. Ann. 114 (1937), 414-431. (1937) | MR 1513147 | Zbl 0016.22603

Deza M.; Hamada N. The geometric structure of a matroid design derived from some commutative Moufang loops and a new MDPB association scheme, Techn. report nr. 18, Statistic Research group, Hiroshima Univ., 1980.

Evans T. Abstract mean values, Duke Math. J. 30 (1963), 331-347. (1963) | MR 0155781 | Zbl 0118.26304

Kepka T. Structure of triabelian quasigroups, Comment. Math. Univ. Carolinae 17 (1976), 229-240. (1976) | MR 0407182 | Zbl 0338.20097