For $n\geq 4$, every $n$-medial $n$-quasigroup is medial. If $1\leq m
@article{116937, author = {Tom\'a\v s Kepka}, title = {$m$-medial $n$-quasigroups}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {32}, year = {1991}, pages = {9-14}, zbl = {0736.20044}, mrnumber = {1118284}, language = {en}, url = {http://dml.mathdoc.fr/item/116937} }
Kepka, Tomáš. $m$-medial $n$-quasigroups. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) pp. 9-14. http://gdmltest.u-ga.fr/item/116937/
Free commutative Moufang loops and anticommutative graded rings, J. Algebra 67 (1980), 1-35. (1980) | MR 0595016
Une classe particulière de matroïdes parfaits, Annals of Discr. Math. 8 (1980), 229-232. (1980) | MR 0597178
Small finite trimedial quasigroups, Commun. Algebra 14 (1986), 1067-1090. (1986) | MR 0837271
Gewebe und Gruppen, Math. Ann. 114 (1937), 414-431. (1937) | MR 1513147 | Zbl 0016.22603
The geometric structure of a matroid design derived from some commutative Moufang loops and a new MDPB association scheme, Techn. report nr. 18, Statistic Research group, Hiroshima Univ., 1980.
Abstract mean values, Duke Math. J. 30 (1963), 331-347. (1963) | MR 0155781 | Zbl 0118.26304
Structure of triabelian quasigroups, Comment. Math. Univ. Carolinae 17 (1976), 229-240. (1976) | MR 0407182 | Zbl 0338.20097