Invariance of $g$-natural metrics on linear frame bundles
Kowalski, Oldřich ; Sekizawa, Masami
Archivum Mathematicum, Tome 044 (2008), p. 139-147 / Harvested from Czech Digital Mathematics Library

In this paper we prove that each $g$-natural metric on a linear frame bundle $LM$ over a Riemannian manifold $(M, g)$ is invariant with respect to a lifted map of a (local) isometry of the base manifold. Then we define $g$-natural metrics on the orthonormal frame bundle $OM$ and we prove the same invariance result as above for $OM$. Hence we see that, over a space $(M, g)$ of constant sectional curvature, the bundle $OM$ with an arbitrary $g$-natural metric $\tilde{G}$ is locally homogeneous.

Publié le : 2008-01-01
Classification:  53C07,  53C20,  53C21,  53C40
@article{116931,
     author = {Old\v rich Kowalski and Masami Sekizawa},
     title = {Invariance of $g$-natural metrics on linear frame bundles},
     journal = {Archivum Mathematicum},
     volume = {044},
     year = {2008},
     pages = {139-147},
     zbl = {1212.53042},
     mrnumber = {2432851},
     language = {en},
     url = {http://dml.mathdoc.fr/item/116931}
}
Kowalski, Oldřich; Sekizawa, Masami. Invariance of $g$-natural metrics on linear frame bundles. Archivum Mathematicum, Tome 044 (2008) pp. 139-147. http://gdmltest.u-ga.fr/item/116931/

Abbassi, M. T. K. Note on the classification theorems of $g$-natural metrics on the tangent bundle of a Riemannian manifolds $(M,g)$, Comment. Math. Univ. Carolin. 45 (2004), 591–596. (2004) | MR 2103077

Cordero, L. A.; De León, M. Lifts of tensor fields to the frame bundle, Rend. Circ. Mat. Palermo 32 (1983), 236–271. (1983) | Article | MR 0729099

Cordero, L. A.; De León, M. On the curvature of the induced Riemannian metric on the frame bundle of a Riemannian manifold, J. Math. Pures Appl. 65 (1986), 81–91. (1986) | MR 0844241

Cordero, L. A.; Dodson, C. T. J.; De León, M. Differential Geometry of Frame Bundles, Mathematics and its Applications, Kluwer Academic Publishers Group, Dordrecht, 1989. (1989) | MR 0980716

Jensen, G. The scalar curvature of left invariant Riemannian metrics, Indiana Univ. Math. J. 20 (1971), 1125–1143. (1971) | Article | MR 0289726 | Zbl 0219.53044

Kolář, I.; Michor, P. W.; Slovák, J. Natural Operations in Differential Geometry, Springer-Verlag, Berlin-Heidelberg-New York, 1993. (1993) | MR 1202431

Kowalski, O.; Sekizawa, M. Invariance of $g$-natural metrics on tangent bundles, to appear in Proceedings of 10th International Conference on Differential Geometry and Its Applications, World Scientific. | MR 2462791

Kowalski, O.; Sekizawa, M. On the geometry of orthonormal frame bundles, to appear in Math. Nachr. | MR 2473330 | Zbl 1158.53015

Kowalski, O.; Sekizawa, M. On the geometry of orthonormal frame bundles II, to appear in Ann. Global Anal. Geom. | MR 2395192 | Zbl 1141.53023

Kowalski, O.; Sekizawa, M. Natural transformations of Riemannian metrics on manifolds to metrics on linear frame bundles—a classification, Differential Geometry and its Applications, Proceeding of the Conference, August 24–30, 1986, Brno, Czechoslovakia, D. Reidel Publ. Comp., pp. 149-178, 1987. (1987) | MR 0923348 | Zbl 0632.53040

Kowalski, O.; Sekizawa, M. On curvatures of linear frame bundles with naturally lifted metrics, Rend. Sem. Mat. Univ. Politec. Torino 63 (2005), 283–295. (2005) | MR 2202049 | Zbl 1141.53020

Krupka, D. Elementary theory of differential invariants, Arch. Math. (Brno) 4 (1978), 207–214. (1978) | MR 0512763 | Zbl 0428.58002

Krupka, D. Differential invariants, Lecture Notes, Faculty of Science, Purkyně University, Brno (1979). (1979)

Krupka, D.; Janyška, J. Lectures on Differential Invariants, University J. E. Purkyně in Brno, 1990. (1990) | MR 1108622

Krupka, D.; V. Mikolášová, On the uniqueness of some differential invariants: $d$, [ , ], $\nabla $, Czechoslovak Math. J. 34 (1984), 588–597. (1984) | MR 0764440

Mok, K. P. On the differential geometry of frame bundles of Riemannian manifolds, J. Reine Angew. Math. 302 (1978), 16–31. (1978) | MR 0511689 | Zbl 0378.53016

O’Neill, B. The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459–469. (1966) | Article | MR 0200865

Zou, X. A new type of homogeneous spaces and the Einstein metrics on $O(n+1)$, Nanjing Univ. J. Math. Biquarterly 23 (2006), 70–78. (2006) | MR 2245416 | Zbl 1192.53055