Weilian prolongations of actions of smooth categories
Kolář, Ivan
Archivum Mathematicum, Tome 044 (2008), p. 133-138 / Harvested from Czech Digital Mathematics Library

First of all, we find some further properties of the characterization of fiber product preserving bundle functors on the category of all fibered manifolds in terms of an infinite sequence $A$ of Weil algebras and a double sequence $H$ of their homomorphisms from [5]. Then we introduce the concept of Weilian prolongation $W_H^A S$ of a smooth category $S$ over ${\mathbb{N}}$ and of its action $D$. We deduce that the functor $(A,H)$ transforms $D$-bundles into $W_H^AD$-bundles.

Publié le : 2008-01-01
Classification:  58A20,  58A32
@article{116930,
     author = {Ivan Kol\'a\v r},
     title = {Weilian prolongations of actions of smooth categories},
     journal = {Archivum Mathematicum},
     volume = {044},
     year = {2008},
     pages = {133-138},
     zbl = {1212.58001},
     mrnumber = {2432850},
     language = {en},
     url = {http://dml.mathdoc.fr/item/116930}
}
Kolář, Ivan. Weilian prolongations of actions of smooth categories. Archivum Mathematicum, Tome 044 (2008) pp. 133-138. http://gdmltest.u-ga.fr/item/116930/

Doupovec, M.; Kolář, I. Iteration of fiber product preserving bundle functors, Monatsh. Math. 134 (2001), 39–50. (2001) | Article | MR 1872045 | Zbl 0999.58001

Kolář, I. Handbook of Global Analysis, ch. Weil Bundles as Generalized Jet Spaces, pp. 625–664, Elsevier, 2008. (2008) | MR 2389643

Kolář, I.; Michor, P. W.; Slovák, J. Natural Operations in Differential Geometry, Springer-Verlag, 1993. (1993) | MR 1202431

Kolář, I.; Mikulski, W. M. On the fiber product preserving bundle functors, Differential Geom. Appl. 11 (1999), 105–115. (1999) | Article | MR 1712139

Kolář, I.; Mikulski, W. M. Fiber product preserving bundle functors on all morphisms of fibered manifolds, Arch. Math. (Brno) 42 (2006), 285–293. (2006) | MR 2260388 | Zbl 1164.58306

Weil, A. Théorie des points proches sur les variétés différentielles, Colloque de topol. et géom. diff., Strasbourg (1953), 111–117. (1953) | MR 0061455