First of all, we find some further properties of the characterization of fiber product preserving bundle functors on the category of all fibered manifolds in terms of an infinite sequence $A$ of Weil algebras and a double sequence $H$ of their homomorphisms from [5]. Then we introduce the concept of Weilian prolongation $W_H^A S$ of a smooth category $S$ over ${\mathbb{N}}$ and of its action $D$. We deduce that the functor $(A,H)$ transforms $D$-bundles into $W_H^AD$-bundles.
@article{116930, author = {Ivan Kol\'a\v r}, title = {Weilian prolongations of actions of smooth categories}, journal = {Archivum Mathematicum}, volume = {044}, year = {2008}, pages = {133-138}, zbl = {1212.58001}, mrnumber = {2432850}, language = {en}, url = {http://dml.mathdoc.fr/item/116930} }
Kolář, Ivan. Weilian prolongations of actions of smooth categories. Archivum Mathematicum, Tome 044 (2008) pp. 133-138. http://gdmltest.u-ga.fr/item/116930/
Iteration of fiber product preserving bundle functors, Monatsh. Math. 134 (2001), 39–50. (2001) | Article | MR 1872045 | Zbl 0999.58001
Handbook of Global Analysis, ch. Weil Bundles as Generalized Jet Spaces, pp. 625–664, Elsevier, 2008. (2008) | MR 2389643
Natural Operations in Differential Geometry, Springer-Verlag, 1993. (1993) | MR 1202431
On the fiber product preserving bundle functors, Differential Geom. Appl. 11 (1999), 105–115. (1999) | Article | MR 1712139
Fiber product preserving bundle functors on all morphisms of fibered manifolds, Arch. Math. (Brno) 42 (2006), 285–293. (2006) | MR 2260388 | Zbl 1164.58306
Théorie des points proches sur les variétés différentielles, Colloque de topol. et géom. diff., Strasbourg (1953), 111–117. (1953) | MR 0061455