We show that the half-linear differential equation \[ \big [r(t)\Phi (x^{\prime })\big ]^{\prime } + \frac{s(t)}{t^p} \Phi (x) = 0 \ast \] with $\alpha $-periodic positive functions $r, s$ is conditionally oscillatory, i.e., there exists a constant $K>0$ such that () with $\frac{\gamma s(t)}{t^p}$ instead of $\frac{s(t)}{t^p}$ is oscillatory for $\gamma > K$ and nonoscillatory for $\gamma < K$.
@article{116929, author = {Petr Hasil}, title = {Conditional oscillation of half-linear differential equations with periodic coefficients}, journal = {Archivum Mathematicum}, volume = {044}, year = {2008}, pages = {119-131}, zbl = {1212.34110}, mrnumber = {2432849}, language = {en}, url = {http://dml.mathdoc.fr/item/116929} }
Hasil, Petr. Conditional oscillation of half-linear differential equations with periodic coefficients. Archivum Mathematicum, Tome 044 (2008) pp. 119-131. http://gdmltest.u-ga.fr/item/116929/
Half-Linear Differential Equations, Elsevier, Mathematics Studies 202, 2005. (2005) | MR 2158903 | Zbl 1090.34001
Oscillation of the perturbed Hill equation and the lower spectrum of radially periodic Schrödinger operators in the plane, Proc. Amer. Math. Soc. 127 (1999), 2367–2374. (1999) | Article | MR 1626474 | Zbl 0918.34039