Conditional oscillation of half-linear differential equations with periodic coefficients
Hasil, Petr
Archivum Mathematicum, Tome 044 (2008), p. 119-131 / Harvested from Czech Digital Mathematics Library

We show that the half-linear differential equation \[ \big [r(t)\Phi (x^{\prime })\big ]^{\prime } + \frac{s(t)}{t^p} \Phi (x) = 0 \ast \] with $\alpha $-periodic positive functions $r, s$ is conditionally oscillatory, i.e., there exists a constant $K>0$ such that () with $\frac{\gamma s(t)}{t^p}$ instead of $\frac{s(t)}{t^p}$ is oscillatory for $\gamma > K$ and nonoscillatory for $\gamma < K$.

Publié le : 2008-01-01
Classification:  34C10
@article{116929,
     author = {Petr Hasil},
     title = {Conditional oscillation of half-linear differential equations with periodic coefficients},
     journal = {Archivum Mathematicum},
     volume = {044},
     year = {2008},
     pages = {119-131},
     zbl = {1212.34110},
     mrnumber = {2432849},
     language = {en},
     url = {http://dml.mathdoc.fr/item/116929}
}
Hasil, Petr. Conditional oscillation of half-linear differential equations with periodic coefficients. Archivum Mathematicum, Tome 044 (2008) pp. 119-131. http://gdmltest.u-ga.fr/item/116929/

Došlý, O.; Řehák, P. Half-Linear Differential Equations, Elsevier, Mathematics Studies 202, 2005. (2005) | MR 2158903 | Zbl 1090.34001

Schmidt, K. M. Oscillation of the perturbed Hill equation and the lower spectrum of radially periodic Schrödinger operators in the plane, Proc. Amer. Math. Soc. 127 (1999), 2367–2374. (1999) | Article | MR 1626474 | Zbl 0918.34039