Let $(M,\mathcal{F})$ be a foliated $m+n$-dimensional manifold $M$ with $n$-dimensional foliation $\mathcal{F}$. Let $V$ be a finite dimensional vector space over $\mathbf{R}$. We describe all canonical (${\mathcal{F}}\mbox {\it ol}_{m,n}$-invariant) $V$-valued $1$-forms $\Theta \colon TP^r(M,{\mathcal{F}}) \rightarrow V$ on the $r$-th order adapted frame bundle $P^r(M,\mathcal{F})$ of $(M,\mathcal{F})$.
@article{116928, author = {Jan Kurek and W\l odzimierz M. Mikulski}, title = {Canonical 1-forms on higher order adapted frame bundles}, journal = {Archivum Mathematicum}, volume = {044}, year = {2008}, pages = {115-118}, zbl = {1212.58002}, mrnumber = {2432848}, language = {en}, url = {http://dml.mathdoc.fr/item/116928} }
Kurek, Jan; Mikulski, Włodzimierz M. Canonical 1-forms on higher order adapted frame bundles. Archivum Mathematicum, Tome 044 (2008) pp. 115-118. http://gdmltest.u-ga.fr/item/116928/
Natural Operations in Differential Geometry, Springer Verlag, 1993. (1993) | MR 1202431
Geometric structures on foliated manifolds, Publications del Departamento de Geometria y Topologia, Universidad de Santiago de Compostella 76 (1989). (1989) | MR 1040852 | Zbl 0838.53029