Complete spacelike hypersurfaces with constant scalar curvature
Shu, Schi Chang
Archivum Mathematicum, Tome 044 (2008), p. 105-114 / Harvested from Czech Digital Mathematics Library

In this paper, we characterize the $n$-dimensional $(n\ge 3)$ complete spacelike hypersurfaces $M^n$ in a de Sitter space $S^{n+1}_1$ with constant scalar curvature and with two distinct principal curvatures one of which is simple.We show that $M^n$ is a locus of moving $(n-1)$-dimensional submanifold $M^{n-1}_1(s)$, along $M^{n-1}_1(s)$ the principal curvature $\lambda $ of multiplicity $n-1$ is constant and $M^{n-1}_1(s)$ is umbilical in $S^{n+1}_1$ and is contained in an $(n-1)$-dimensional sphere $S^{n-1}\big (c(s)\big )=E^n(s)\cap S^{n+1}_1$ and is of constant curvature $\big (\frac{d\lbrace \log |\lambda ^2-(1-R)|^{1/n}\rbrace }{ds}\big )^2-\lambda ^2+1$,where $s$ is the arc length of an orthogonal trajectory of the family $M^{n-1}_1(s)$, $E^n(s)$ is an $n$-dimensional linear subspace in $R^{n+2}_1$ which is parallel to a fixed $E^n(s_0)$ and $u=\big |\lambda ^2-(1-R)\big |^{-\frac{1}{n}}$ satisfies the ordinary differental equation of order 2, $\frac{d^2u}{ds^2}-u\big (\pm \frac{n-2}{2}\frac{1}{u^n}+R-2\big )=0$.

Publié le : 2008-01-01
Classification:  53C20,  53C42
@article{116927,
     author = {Schi Chang Shu},
     title = {Complete spacelike hypersurfaces with constant scalar curvature},
     journal = {Archivum Mathematicum},
     volume = {044},
     year = {2008},
     pages = {105-114},
     zbl = {1212.53084},
     mrnumber = {2432847},
     language = {en},
     url = {http://dml.mathdoc.fr/item/116927}
}
Shu, Schi Chang. Complete spacelike hypersurfaces with constant scalar curvature. Archivum Mathematicum, Tome 044 (2008) pp. 105-114. http://gdmltest.u-ga.fr/item/116927/

Brasil, A., Jr., ; Colares, A. G.; Palmas, O. Complete spacelike hypersurfaces with constant mean curvature in the de Sitter space: A gap Theorem, Illinois J. Math. 47 (3) (2003), 847–866. (2003) | MR 2007240 | Zbl 1047.53031

Cheng, Q. M. Complete hypersurfaces in a Euclidean space $R^{n+1}$ with constant scalar curvature, Indiana Univ. Math. J. 51 (2002), 53–68. (2002) | Article | MR 1896156

Otsuki, T. Minimal hypersurfaces in a Riemannian manifold of constant curvature, Amer. J. Math. 92 (1970), 145–173. (1970) | Article | MR 0264565 | Zbl 0196.25102

Shu, S. C. Complete spacelike hypersurfaces in a de Sitter space, Bull. Austral. Math. Soc. 73 (2006), 9–16. (2006) | Article | MR 2206558 | Zbl 1098.53051

Zheng, Y. On spacelike hypersurfaces in the de Sitter spaces, Ann. Global Anal. Geom. 13 (1995), 317–321. (1995) | Article | MR 1364006

Zheng, Y. Spacelike hypersurfaces with constant scalar curvature in the de Sitter spaces, Differential Geom. Appl. 6 (1996), 51–54. (1996) | Article | MR 1384878