Integrability of homogeneous polynomials on the unit ball
Kot, Piotr
Bull. Belg. Math. Soc. Simon Stevin, Tome 12 (2006) no. 5, p. 743-762 / Harvested from Project Euclid
We construct some measure $\Theta^{\alpha}$ such that if $0<\alpha\leq2n-2$, $\beta=n-\frac{2+\alpha}{2}$ and $E$ is a circular set of type $G_{\delta}$ such that $E\subset\partial\Bbb B^{n}$ and $\Theta^{\alpha}(E)=0$ then there exists $f\in\Bbb O(\Bbb B^{n})\cap L^{2}(\Bbb B^{n})$ such that \[ E=E^{\beta}(f):=\left\{ z\in \partial B^{n}:\:\int_{\Bbb Dz}\left|f\right|^{2}\chi_{\beta}d\mathfrak{L}^{2}=\infty\right\} \] where $\chi_{s}:\Bbb B^{n}\ni z\longrightarrow\chi_{s}(z)=(1-\left\Vert z\right\Vert ^{2})^{s}$ and $\Bbb D$ denotes the unit disc in $\Bbb C$.
Publié le : 2006-12-14
Classification:  homogeneous polynomials,  exceptional sets,  highly nonintegrable holomorphic functions,  32A05,  32A35
@article{1168957350,
     author = {Kot, Piotr},
     title = {Integrability of homogeneous polynomials on the unit ball},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {12},
     number = {5},
     year = {2006},
     pages = { 743-762},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1168957350}
}
Kot, Piotr. Integrability of homogeneous polynomials on the unit ball. Bull. Belg. Math. Soc. Simon Stevin, Tome 12 (2006) no. 5, pp.  743-762. http://gdmltest.u-ga.fr/item/1168957350/