Note on Hilbert-Schmidt composition operators on weighted Hardy spaces
Mitsis, Themis
Bull. Belg. Math. Soc. Simon Stevin, Tome 12 (2006) no. 5, p. 739-742 / Harvested from Project Euclid
We show that if $C_\varphi$ is a Hilbert-Schmidt composition operator on an appropriately weighted Hardy space, then there exists a capacity, associated to the weight sequence of the space, so that the set on which the radial limit of $\varphi$ is unimodular has capacity zero. This extends recent results by Gallardo-Gutiérrez and González.
Publié le : 2006-12-14
Classification:  Hilbert-Schmidt composition operator,  capacity,  47B33,  30C85,  31A20
@article{1168957349,
     author = {Mitsis, Themis},
     title = {Note on Hilbert-Schmidt composition operators on weighted Hardy spaces},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {12},
     number = {5},
     year = {2006},
     pages = { 739-742},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1168957349}
}
Mitsis, Themis. Note on Hilbert-Schmidt composition operators on weighted Hardy spaces. Bull. Belg. Math. Soc. Simon Stevin, Tome 12 (2006) no. 5, pp.  739-742. http://gdmltest.u-ga.fr/item/1168957349/