Absolute bounds on the number of generators of Cohen-Macaulay ideals of height two
Schoutens, Hans
Bull. Belg. Math. Soc. Simon Stevin, Tome 12 (2006) no. 5, p. 719-732 / Harvested from Project Euclid
For a Noetherian local domain $A$, there exists an upper bound $N_\tau(A)$ on the minimal number of generators of any height two ideal $\mathfrak a$ for which $A/\mathfrak a$ is Cohen-Macaulay of type $\tau$. If $A$ contains an infinite field, then we may take $N_\tau(A):=(\tau+1)e_{\textup{hom}}(A)$, where $e_{\textup{hom}}(A)$ is the homological multiplicity of $A$.
Publié le : 2006-12-14
Classification:  number of generators,  Cohen-Macaulay ideals,  Noether Normalization,  homological multiplicity,  13E15,  3C14
@article{1168957347,
     author = {Schoutens, Hans},
     title = {Absolute bounds on the number of generators of Cohen-Macaulay ideals of height two},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {12},
     number = {5},
     year = {2006},
     pages = { 719-732},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1168957347}
}
Schoutens, Hans. Absolute bounds on the number of generators of Cohen-Macaulay ideals of height two. Bull. Belg. Math. Soc. Simon Stevin, Tome 12 (2006) no. 5, pp.  719-732. http://gdmltest.u-ga.fr/item/1168957347/