We show that any hermitian
$^{\ast}$-$l.m.c.a.$, the set of positive elements of which is a
locally bounded cone, is necessarily a $Q$-algebra (the converse
is not true). We also obtain that the algebra of
complex numbers is the unique locally $C^{\ast}$-algebra without
zero-divisors.
@article{1168957344,
author = {El Kinani, A. and Nejjari, M. A. and Oudadess, M.},
title = {On classifying involutive locally $m$-convex algebras, via cones},
journal = {Bull. Belg. Math. Soc. Simon Stevin},
volume = {12},
number = {5},
year = {2006},
pages = { 681-687},
language = {en},
url = {http://dml.mathdoc.fr/item/1168957344}
}
El Kinani, A.; Nejjari, M. A.; Oudadess, M. On classifying involutive locally $m$-convex algebras, via cones. Bull. Belg. Math. Soc. Simon Stevin, Tome 12 (2006) no. 5, pp. 681-687. http://gdmltest.u-ga.fr/item/1168957344/