Subharmonicity of Powers of Octonion-Valued Monogenic Functions and Some Applications
Kheyfits , Alexander ; Tepper, David
Bull. Belg. Math. Soc. Simon Stevin, Tome 12 (2006) no. 5, p. 609-617 / Harvested from Project Euclid
It is proven that for an octonion-valued monogenic function $f(\mathbf{x})$, $\mathbf{x} \in \mathbf{R}^8$, its powers $|f|^p$ are subharmonic for any $p\geq 6/7$. This implies, in particular, Hadamard's three circles and three lines theorems and a Phragmén-Lindelöf theorem for monogenic functions.
Publié le : 2006-12-14
Classification:  Octonion-valued monogenic functions,  Subharmonicity of powers,  30G35,  31B05,  35E99
@article{1168957338,
     author = {Kheyfits , Alexander and Tepper, David},
     title = {Subharmonicity of Powers of Octonion-Valued Monogenic Functions
and Some Applications},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {12},
     number = {5},
     year = {2006},
     pages = { 609-617},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1168957338}
}
Kheyfits , Alexander; Tepper, David. Subharmonicity of Powers of Octonion-Valued Monogenic Functions
and Some Applications. Bull. Belg. Math. Soc. Simon Stevin, Tome 12 (2006) no. 5, pp.  609-617. http://gdmltest.u-ga.fr/item/1168957338/