An unstable elliptic free boundary problem arising in solid combustion
Monneau, R. ; Weiss, G. S.
Duke Math. J., Tome 136 (2007) no. 1, p. 321-341 / Harvested from Project Euclid
We prove a regularity result for the unstable elliptic free boundary problem \begin{equation}\Delta u = -\chi_{\{ u\gt 0\}} \end{equation} related to traveling waves in a problem arising in solid combustion. The maximal solution and every local minimizer of the energy are regular; that is, $\{u=0\}$ is locally an analytic surface, and $u|_{\overline{\{u\gt 0\}}}, u|_{\overline{\{ u \lt 0\}}}$ are locally analytic functions. Moreover, we prove a partial regularity result for solutions that are nondegenerate of second order. Here $\{u=0\}$ is analytic up to a closed set of Hausdorff dimension $n-2$ . We discuss possible singularities
Publié le : 2007-02-01
Classification:  35R35,  35J60,  35B65
@article{1166711372,
     author = {Monneau, R. and Weiss, G. S.},
     title = {An unstable elliptic free boundary problem arising in solid combustion},
     journal = {Duke Math. J.},
     volume = {136},
     number = {1},
     year = {2007},
     pages = { 321-341},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1166711372}
}
Monneau, R.; Weiss, G. S. An unstable elliptic free boundary problem arising in solid combustion. Duke Math. J., Tome 136 (2007) no. 1, pp.  321-341. http://gdmltest.u-ga.fr/item/1166711372/