Gradient estimates for a class of parabolic systems
Acerbi, Emilio ; Mingione, Giuseppe
Duke Math. J., Tome 136 (2007) no. 1, p. 285-320 / Harvested from Project Euclid
We establish local Calderón-Zygmund-type estimates for a class of parabolic problems whose model is the nonhomogeneous, degenerate/singular parabolic $p$ -Laplacian system $u_t -\operatorname{div}(|Du|^{p-2}Du) =\operatorname{div}(|F|^{p-2}F),$ proving that $F \in L_\operatorname{loc}^{ q} \Longrightarrow Du\in L^{q}_\operatorname{loc},\quad \forall\,q\geq p.$ We also treat systems with discontinuous coefficients of vanishing mean oscillation (VMO) type
Publié le : 2007-02-01
Classification:  35K55,  35K65
@article{1166711371,
     author = {Acerbi, Emilio and Mingione, Giuseppe},
     title = {Gradient estimates for a class of parabolic systems},
     journal = {Duke Math. J.},
     volume = {136},
     number = {1},
     year = {2007},
     pages = { 285-320},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1166711371}
}
Acerbi, Emilio; Mingione, Giuseppe. Gradient estimates for a class of parabolic systems. Duke Math. J., Tome 136 (2007) no. 1, pp.  285-320. http://gdmltest.u-ga.fr/item/1166711371/