Pluricanonical systems of projective varieties of general type I
Tsuji, Hajime
Osaka J. Math., Tome 43 (2006) no. 2, p. 967-995 / Harvested from Project Euclid
Assuming the minimal model program, we prove that there exists a positive integer $\nu_{n}$ depending only on $n$ such that for every smooth projective $n$-fold of general type $X$ defined over complex numbers, $|mK_{X}|$ gives a birational rational map from $X$ into a projective space for every $m\geq \nu_{n}$.
Publié le : 2006-12-14
Classification:  14E25,  14J40,  32U05
@article{1165850044,
     author = {Tsuji, Hajime},
     title = {Pluricanonical systems of projective varieties of general type I},
     journal = {Osaka J. Math.},
     volume = {43},
     number = {2},
     year = {2006},
     pages = { 967-995},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1165850044}
}
Tsuji, Hajime. Pluricanonical systems of projective varieties of general type I. Osaka J. Math., Tome 43 (2006) no. 2, pp.  967-995. http://gdmltest.u-ga.fr/item/1165850044/