Well-posedness of the generalized Benjamin-Ono-Burgers equations in Sobolev spaces of negative order
Otani, Masanori
Osaka J. Math., Tome 43 (2006) no. 2, p. 935-965 / Harvested from Project Euclid
We study the well-posedness issue of the generalized Benjamin-Ono-Burgers (gBO-B) equations. We solve the initial-value problem (IVP) of the gBO-B equations with data below $L^2 (\mathbf{R})$. Our proof is based on the method of L. Molinet and F. Ribaud, which is analogous to that of J. Bourgain, and C.E. Kenig, G. Ponce, and L. Vega. It is known that such a method cannot be applied to the Benjamin-Ono equation.
Publié le : 2006-12-14
Classification:  35A07,  35M10,  35Q53,  76B15
@article{1165850043,
     author = {Otani, Masanori},
     title = {Well-posedness of the generalized Benjamin-Ono-Burgers equations in Sobolev spaces of negative order},
     journal = {Osaka J. Math.},
     volume = {43},
     number = {2},
     year = {2006},
     pages = { 935-965},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1165850043}
}
Otani, Masanori. Well-posedness of the generalized Benjamin-Ono-Burgers equations in Sobolev spaces of negative order. Osaka J. Math., Tome 43 (2006) no. 2, pp.  935-965. http://gdmltest.u-ga.fr/item/1165850043/