Reidemeister torsion and lens surgeries on knots in homology 3-spheres I
Kadokami, Teruhisa
Osaka J. Math., Tome 43 (2006) no. 2, p. 823-837 / Harvested from Project Euclid
Let $\Sigma(K; p/q)$ be the result of $p/q$-surgery along a knot $K$ in a homology 3-sphere $\Sigma$. We investigate the Reidemeister torsion of $\Sigma(K; p/q)$. Firstly, when the Alexander polynomial of $K$ is the same as that of a torus knot, we give a necessary and sufficient condition for the Reidemeister torsion of $\Sigma(K; p/q)$ to be that of a lens space. Secondly, when the Alexander polynomial of $K$ is of degree $2$, we show that if the Reidemeister torsion of $\Sigma(K; p/q)$ is the same as that of a lens space, then $\varDelta_K(t)=t^2-t+1$.
Publié le : 2006-12-14
Classification:  57M25,  57M27,  57Q10
@article{1165850038,
     author = {Kadokami, Teruhisa},
     title = {Reidemeister torsion and lens surgeries on knots in homology 3-spheres I},
     journal = {Osaka J. Math.},
     volume = {43},
     number = {2},
     year = {2006},
     pages = { 823-837},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1165850038}
}
Kadokami, Teruhisa. Reidemeister torsion and lens surgeries on knots in homology 3-spheres I. Osaka J. Math., Tome 43 (2006) no. 2, pp.  823-837. http://gdmltest.u-ga.fr/item/1165850038/