Every 1-generic computes a properly 1-generic
Csima, Barbara F. ; Downey, Rod ; Greenberg, Noam ; Hirschfeldt, Denis R. ; Miller, Joseph S.
J. Symbolic Logic, Tome 71 (2006) no. 1, p. 1385-1393 / Harvested from Project Euclid
A real is called properly n-generic if it is n-generic but not n+1-generic. We show that every 1-generic real computes a properly 1-generic real. On the other hand, if m > n ≥ 2 then an m-generic real cannot compute a properly n-generic real.
Publié le : 2006-12-14
Classification: 
@article{1164060461,
     author = {Csima, Barbara F. and Downey, Rod and Greenberg, Noam and Hirschfeldt, Denis R. and Miller, Joseph S.},
     title = {Every 1-generic computes a properly 1-generic},
     journal = {J. Symbolic Logic},
     volume = {71},
     number = {1},
     year = {2006},
     pages = { 1385-1393},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1164060461}
}
Csima, Barbara F.; Downey, Rod; Greenberg, Noam; Hirschfeldt, Denis R.; Miller, Joseph S. Every 1-generic computes a properly 1-generic. J. Symbolic Logic, Tome 71 (2006) no. 1, pp.  1385-1393. http://gdmltest.u-ga.fr/item/1164060461/