Threshold for monotone symmetric properties through a logarithmic Sobolev inequality
Rossignol, Raphaël
Ann. Probab., Tome 34 (2006) no. 1, p. 1707-1725 / Harvested from Project Euclid
Threshold phenomena are investigated using a general approach, following Talagrand [Ann. Probab. 22 (1994) 1576–1587] and Friedgut and Kalai [Proc. Amer. Math. Soc. 12 (1999) 1017–1054]. The general upper bound for the threshold width of symmetric monotone properties is improved. This follows from a new lower bound on the maximal influence of a variable on a Boolean function. The method of proof is based on a well-known logarithmic Sobolev inequality on {0,1}n. This new bound is shown to be asymptotically optimal.
Publié le : 2006-09-14
Classification:  Threshold,  influence of variables,  zero–one law,  logarithmic Sobolev inequalities,  60F20,  28A35,  60E15
@article{1163517220,
     author = {Rossignol, Rapha\"el},
     title = {Threshold for monotone symmetric properties through a logarithmic Sobolev inequality},
     journal = {Ann. Probab.},
     volume = {34},
     number = {1},
     year = {2006},
     pages = { 1707-1725},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1163517220}
}
Rossignol, Raphaël. Threshold for monotone symmetric properties through a logarithmic Sobolev inequality. Ann. Probab., Tome 34 (2006) no. 1, pp.  1707-1725. http://gdmltest.u-ga.fr/item/1163517220/