Asymptotic equivalence of nonparametric autoregression and nonparametric regression
Grama, Ion G. ; Neumann, Michael H.
Ann. Statist., Tome 34 (2006) no. 1, p. 1701-1732 / Harvested from Project Euclid
It is proved that nonparametric autoregression is asymptotically equivalent in the sense of Le Cam’s deficiency distance to nonparametric regression with random design as well as with regular nonrandom design.
Publié le : 2006-08-14
Classification:  Asymptotic equivalence,  deficiency distance,  Gaussian approximation,  nonparametric autoregression,  nonparametric regression,  62B15,  62G07,  62G20
@article{1162567630,
     author = {Grama, Ion G. and Neumann, Michael H.},
     title = {Asymptotic equivalence of nonparametric autoregression and nonparametric regression},
     journal = {Ann. Statist.},
     volume = {34},
     number = {1},
     year = {2006},
     pages = { 1701-1732},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1162567630}
}
Grama, Ion G.; Neumann, Michael H. Asymptotic equivalence of nonparametric autoregression and nonparametric regression. Ann. Statist., Tome 34 (2006) no. 1, pp.  1701-1732. http://gdmltest.u-ga.fr/item/1162567630/