On the Ishida and Du Bois complexes
Fornasiero, Marianna
Kodai Math. J., Tome 29 (2006) no. 1, p. 462-474 / Harvested from Project Euclid
In [12] Ishida introduces a complex, denoted by $\tilde {\Omega}^{^.}_Y$ , associated to a filtered semi-toroidal variety Y over Spec C and proves that it is quasi-isomorphic to the Du Bois complex $\underline{\underline{ \Omega}}^{^.}_Y$ ([5]). In this article we regard a filtered semi-toroidal variety Y as an ideally log smooth log scheme over Spec C, and we give an interpretation of the Ishida complex $\tilde {\Omega}^{^.}_Y$ in terms of logarithmic geometry. Therefore, given a log smooth log scheme X over Spec C, we use this logarithmic interpretation of the Ishida complex to construct the following distinguished triangle in the Du Bois derived category Ddiff(X): $I_M \omega^{^.}_X \longrightarrow \underline{\underline{\Omega}}^{^.}_X \longrightarrow \underline{\underline{\Omega}}^{^.}_D \longrightarrow .$ , where D = X − Xtriv (Xtriv being the trivial locus for the log structure M on X). Since the complex $I_M \omega^{^.}_X$ calculates the De Rham cohomology with compact supports of the smooth analytic space $X_{triv}^{an}$ ([20, Corollary 1.6]), this triangle is useful to give an interpretation of $H^{^.}_{DR,c}$ (Xtriv/C) as the hyper-cohomology of the simple complex $\underline{\underline{s}}[\underline{\underline{\Omega}}^{^.}_X \longrightarrow \underline{\underline{\Omega}}^{^.}_D]$ .
Publié le : 2006-10-14
Classification: 
@article{1162478773,
     author = {Fornasiero, Marianna},
     title = {On the Ishida and Du Bois complexes},
     journal = {Kodai Math. J.},
     volume = {29},
     number = {1},
     year = {2006},
     pages = { 462-474},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1162478773}
}
Fornasiero, Marianna. On the Ishida and Du Bois complexes. Kodai Math. J., Tome 29 (2006) no. 1, pp.  462-474. http://gdmltest.u-ga.fr/item/1162478773/