Study of some subclasses of univalent functions and their radius properties
Ponnusamy, S. ; Sahoo, S. K.
Kodai Math. J., Tome 29 (2006) no. 1, p. 391-405 / Harvested from Project Euclid
An analytic function f(z)=z+a2z2 + … in the unit disk Δ = {z: |z| < 1} is said to be in $\mathcal{U}(\lambda, \mu)$ if ¶ $\left|f'(z)\left(\frac{z}{f(z)} \right)^ {\mu +1}-1 \right|\le \lambda \quad (|z|<1)$ ¶ for some λ ≥ 0 and μ > –1. For –1 ≤ α ≤ 1, we introduce a geometrically motivated $\mathcal{S}_p(\alpha)$ -class defined by ¶ ${\mathcal S}_p(\alpha) = \left \{f\in {\mathcal S}:\, \left |\frac{zf'(z)}{f(z)} -1\right |\leq {\rm Re}\, \frac{zf'(z)}{f(z)}-\alpha, \quad z\in \Delta \right \},$ ¶ where ${\mathcal S}$ represents the class of all normalized univalent functions in Δ. In this paper, the authors determine necessary and sufficient coefficient conditions for certain class of functions to be in $\mathcal{S}_p(\alpha)$ . Also, radius properties are considered for $\mathcal{S}_p(\alpha)$ -class in the class ${\mathcal S}$ . In addition, we also find disks |z| < r:= r(λ,μ) for which $\frac{1}{r}f(rz)\in \mathcal{U(\lambda,\mu)}$ whenever $f\in \mathcal{S}$ . In addition to a number of new results, we also present several new sufficient conditions for f to be in the class $\mathcal{U}(\lambda, \mu)$ .
Publié le : 2006-10-14
Classification: 
@article{1162478770,
     author = {Ponnusamy, S. and Sahoo, S. K.},
     title = {Study of some subclasses of univalent functions and their radius properties},
     journal = {Kodai Math. J.},
     volume = {29},
     number = {1},
     year = {2006},
     pages = { 391-405},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1162478770}
}
Ponnusamy, S.; Sahoo, S. K. Study of some subclasses of univalent functions and their radius properties. Kodai Math. J., Tome 29 (2006) no. 1, pp.  391-405. http://gdmltest.u-ga.fr/item/1162478770/