The finiteness of co-associated primes of local homology modules
Nam, Tran Tuan
Kodai Math. J., Tome 29 (2006) no. 1, p. 383-390 / Harvested from Project Euclid
Let M be a semi-discrete linearly compact module over a commutative noetherian ring R and i a non-negative integer. We show that the set of co-associated primes of the local homology R-module $H^I_i$ (M) is finite in either of the following cases: (i) The R-modules $H^I_i$ (M) are finite for all j < i; (ii) I ⊆ Rad (AnnR( $H^I_i$ (M))) for all j < i. By Matlis duality we extend some results for the finiteness of associated primes of local cohomology modules $H^I_i$ (M).
Publié le : 2006-10-14
Classification: 
@article{1162478769,
     author = {Nam, Tran Tuan},
     title = {The finiteness of co-associated primes of local homology modules},
     journal = {Kodai Math. J.},
     volume = {29},
     number = {1},
     year = {2006},
     pages = { 383-390},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1162478769}
}
Nam, Tran Tuan. The finiteness of co-associated primes of local homology modules. Kodai Math. J., Tome 29 (2006) no. 1, pp.  383-390. http://gdmltest.u-ga.fr/item/1162478769/