0$ and $p\geq 2$ provided that $L$ generates a ultracontractive Markovian semigroup $P_t=e^{tL}$ in the sense that $P_t 1=1$ for all $t\geq 0$, $\|P_t\|_{1, \infty} < Ct^{-n/2}$ for all $t\in (0, 1]$ for some constants $C>0$ and $n > 1$, and satisfies $$ (K+c)^{-}\in L^{{n\over 2}+\epsilon}(M, \mu) $$ for some constants $c\geq 0$ and $\epsilon>0$, where $K(x)$ denotes the lowest eigenvalue of the Bakry-Emery Ricci curvature $Ric(L)=Ric+\nabla^2\phi$ on $T_x M$, i.e., $$ K(x)=\inf\limits\{Ric(L)(v, v): v\in T_x M, \|v\|=1\}, \quad\forall\ x\in M. $$ Examples of diffusion operators on complete non-compact Riemannian manifolds with unbounded negative Ricci curvature or Bakry-Emery Ricci curvature are given for which the Riesz transform $R_a(L)$ is bounded in $L^p(\mu)$ for all $p\geq 2$ and for all $a>0$ (or even for all $a\geq 0$).
@article{1161871349, author = {Li , Xiang Dong}, title = {Riesz transforms for symmetric diffusion operators on complete Riemannian manifolds}, journal = {Rev. Mat. Iberoamericana}, volume = {22}, number = {2}, year = {2006}, pages = { 591-648}, language = {en}, url = {http://dml.mathdoc.fr/item/1161871349} }
Li , Xiang Dong. Riesz transforms for symmetric diffusion operators on complete Riemannian manifolds. Rev. Mat. Iberoamericana, Tome 22 (2006) no. 2, pp. 591-648. http://gdmltest.u-ga.fr/item/1161871349/