In this paper, we are concerned with the asymptotically linear
elliptic problem $-\Delta u+ \lambda_{0}u=f(u), u\in
H_{0}^{1}(\Omega ) $ in an exterior domain $\Omega=
\mathbb{R}^{N}\setminus\overline{\mathcal{O}} \left( N\geqslant
3\right) $ with $\mathcal{O}$ a smooth bounded and star-shaped open
set, and $\lim_{t\rightarrow +\infty }\frac{ f(t)}{t}=l$, $0
Publié le : 2006-09-14
Classification:
asymptotically linear elliptic,
exterior domain,
algebraic topology argument,
positive solution,
35J20,
35J25,
35J65
@article{1161871348,
author = {Li
,
Gongbao and Zheng
,
Gao-Feng},
title = {The existence of positive solution to
some asymptotically linear elliptic equations in exterior domains},
journal = {Rev. Mat. Iberoamericana},
volume = {22},
number = {2},
year = {2006},
pages = { 559-590},
language = {en},
url = {http://dml.mathdoc.fr/item/1161871348}
}
Li
,
Gongbao; Zheng
,
Gao-Feng. The existence of positive solution to
some asymptotically linear elliptic equations in exterior domains. Rev. Mat. Iberoamericana, Tome 22 (2006) no. 2, pp. 559-590. http://gdmltest.u-ga.fr/item/1161871348/