The existence of positive solution to some asymptotically linear elliptic equations in exterior domains
Rev. Mat. Iberoamericana, Tome 22 (2006) no. 2, p. 559-590 / Harvested from Project Euclid
In this paper, we are concerned with the asymptotically linear elliptic problem $-\Delta u+ \lambda_{0}u=f(u), u\in H_{0}^{1}(\Omega ) $ in an exterior domain $\Omega= \mathbb{R}^{N}\setminus\overline{\mathcal{O}} \left( N\geqslant 3\right) $ with $\mathcal{O}$ a smooth bounded and star-shaped open set, and $\lim_{t\rightarrow +\infty }\frac{ f(t)}{t}=l$, $0
Publié le : 2006-09-14
Classification:  asymptotically linear elliptic,  exterior domain,  algebraic topology argument,  positive solution,  35J20,  35J25,  35J65
@article{1161871348,
     author = {Li
,  
Gongbao and Zheng
,  
Gao-Feng},
     title = {The existence of positive solution to
some asymptotically linear elliptic equations in exterior domains},
     journal = {Rev. Mat. Iberoamericana},
     volume = {22},
     number = {2},
     year = {2006},
     pages = { 559-590},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1161871348}
}
Li
,  
Gongbao; Zheng
,  
Gao-Feng. The existence of positive solution to
some asymptotically linear elliptic equations in exterior domains. Rev. Mat. Iberoamericana, Tome 22 (2006) no. 2, pp.  559-590. http://gdmltest.u-ga.fr/item/1161871348/