A geometry on the space of probabilities I. The finite dimensional case
Rev. Mat. Iberoamericana, Tome 22 (2006) no. 2, p. 545-558 / Harvested from Project Euclid
In this note we provide a natural way of defining exponential coordinates on the class of probabilities on the set $\Omega = [1,n]$ or on $\mathbb{P} = \{p=(p_1,\dots,p_n)\in \mathbb{R}^n | p_i > 0; \Sigma_{i=1}^n p_i =1\}$. For that we have to regard $\mathbb{P}$ as a projective space and the exponential coordinates will be related to geodesic flows in $\mathbb{C}^n$.
Publié le : 2006-09-14
Classification:  $C^*$-algebra,  reductive homogeneous space,  lifting of geodesics,  exponential families,  maximum entropy method,  46L05,  53C05,  53C56,  60B99,  60E05,  53C30,  32M99,  62A25,  94A17
@article{1161871347,
     author = {Gzyl
,  
Henryk and Recht
,  
L\'azaro},
     title = {A geometry on the space of probabilities I. The finite dimensional case},
     journal = {Rev. Mat. Iberoamericana},
     volume = {22},
     number = {2},
     year = {2006},
     pages = { 545-558},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1161871347}
}
Gzyl
,  
Henryk; Recht
,  
Lázaro. A geometry on the space of probabilities I. The finite dimensional case. Rev. Mat. Iberoamericana, Tome 22 (2006) no. 2, pp.  545-558. http://gdmltest.u-ga.fr/item/1161871347/