Superposition operators and functions of bounded $p$-variation
Rev. Mat. Iberoamericana, Tome 22 (2006) no. 2, p. 455-487 / Harvested from Project Euclid
We characterize the set of all functions $f$ of $\mathbb R$ to itself such that the associated superposition operator $T_f: g \to f \circ g$ maps the class $BV^1_p (\mathbb R)$ into itself. Here $BV^1_p (\mathbb R)$, $1 \le p < \infty$, denotes the set of primitives of functions of bounded $p$-variation, endowed with a suitable norm. It turns out that such an operator is always bounded and sublinear. Also, consequences for the boundedness of superposition operators defined on Besov spaces $B^s_{p,q}({\mathbb R}^n)$ are discussed.
Publié le : 2006-09-14
Classification:  functions of bounded $p$-variation,  homogeneous and inhomogeneous Besov spaces,  Peetre's embedding theorem,  boundedness of superposition operators,  46E35,  47H30
@article{1161871345,
     author = {Bourdaud
,  
G\'erard and Lanza de Cristoforis
,  
Massimo and Sickel
,  
Winfried},
     title = {Superposition operators and functions of bounded $p$-variation},
     journal = {Rev. Mat. Iberoamericana},
     volume = {22},
     number = {2},
     year = {2006},
     pages = { 455-487},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1161871345}
}
Bourdaud
,  
Gérard; Lanza de Cristoforis
,  
Massimo; Sickel
,  
Winfried. Superposition operators and functions of bounded $p$-variation. Rev. Mat. Iberoamericana, Tome 22 (2006) no. 2, pp.  455-487. http://gdmltest.u-ga.fr/item/1161871345/