Genus 3 normal coverings of the Riemann sphere branched over 4 points
Rev. Mat. Iberoamericana, Tome 22 (2006) no. 2, p. 413-454 / Harvested from Project Euclid
In this paper we study the $5$ families of genus $3$ compact Riemann surfaces which are normal coverings of the Riemann sphere branched over $4$ points from very different aspects: their moduli spaces, the uniform Belyi functions that factorize through the quotient by the automorphism groups and the Weierstrass points of the non hyperelliptic families.
Publié le : 2006-09-14
Classification:  moduli of algebraic curves with automorphisms,  Weierstrass points,  uniform Belyi functions,  14H15,  14H45,  14H55
@article{1161871344,
     author = {Fuertes
,  
Yolanda and Streit
,  
Manfred},
     title = {Genus 3 normal coverings of the Riemann sphere branched over 4 points},
     journal = {Rev. Mat. Iberoamericana},
     volume = {22},
     number = {2},
     year = {2006},
     pages = { 413-454},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1161871344}
}
Fuertes
,  
Yolanda; Streit
,  
Manfred. Genus 3 normal coverings of the Riemann sphere branched over 4 points. Rev. Mat. Iberoamericana, Tome 22 (2006) no. 2, pp.  413-454. http://gdmltest.u-ga.fr/item/1161871344/