Closedness of bounded convex sets of asymmetric normed linear spaces and the Hausdorff quasi-metric
Rodríguez-López, Jesús ; Romaguera, Salvador
Bull. Belg. Math. Soc. Simon Stevin, Tome 12 (2006) no. 5, p. 551-562 / Harvested from Project Euclid
If $A$ is a (nonempty) bounded convex subset of an asymmetric normed linear space $(X,q),$ we define the closedness of $A$ as the set \textrm{cl}$% _{q}A\cap \mathrm{cl}_{q^{-1}}A,$ and denote by $CB_{0}(X)$ the collection of the closednesses of all (nonempty) bounded convex subsets of $(X,q).$ We show that $CB_{0}(X),$ endowed with the Hausdorff quasi-metric of $q,$ can be structured as a quasi-metric cone. Then, and extending a classical embedding theorem of L. H\"{o}rmander, we prove that there is an isometric isomorphism from this quasi-metric cone into the product of two asymmetric normed linear spaces of bounded continuous real functions equipped with the asymmetric norm of uniform convergence.
Publié le : 2006-09-14
Classification:  The Hausdorff quasi-metric,  asymmetric normed linear space,  quasi-metric cone,  bounded convex subset,  closedness,  isometric isomorphism,  54B20,  54C25,  54C35
@article{1161350696,
     author = {Rodr\'\i guez-L\'opez, Jes\'us and Romaguera, Salvador},
     title = {Closedness of bounded convex sets of asymmetric normed linear spaces and the
Hausdorff quasi-metric},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {12},
     number = {5},
     year = {2006},
     pages = { 551-562},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1161350696}
}
Rodríguez-López, Jesús; Romaguera, Salvador. Closedness of bounded convex sets of asymmetric normed linear spaces and the
Hausdorff quasi-metric. Bull. Belg. Math. Soc. Simon Stevin, Tome 12 (2006) no. 5, pp.  551-562. http://gdmltest.u-ga.fr/item/1161350696/