Sandwich-type theorems for a class of integral operators
Bulboacă, Teodor
Bull. Belg. Math. Soc. Simon Stevin, Tome 12 (2006) no. 5, p. 537-550 / Harvested from Project Euclid
Let $H(\mathrm{U})$ be the space of all analytic functions in the unit disk $\mathrm{U}$. For a given function $h\in\mathcal{A}$ we define the integral operator $\mathrm{I}_{h;\beta}:\mathcal{K}\rightarrow H(\mathrm{U})$, with $\mathcal K\subset H(\mathrm{U})$, by $$\mathrm{I}_{h;\beta}[f](z)=\left[\beta \int_0^zf^\beta(t)h^{-1}(t)h'(t)\operatorname{d}t\right]^{1/\beta},$$ where $\beta\in\mathbb{C}$ and all powers are the principal ones. We will determine sufficient conditions on $g_1$, $g_2$ and $\beta$ such that $$\left[\frac{zh'(z)}{h(z)}\right]^{1/\beta}g_1(z)\prec \left[\frac{zh'(z)}{h(z)}\right]^{1/\beta}f(z)\prec \left[\frac{zh'(z)}{h(z)}\right]^{1/\beta}g_2(z)$$ implies $$\mathrm{I}_{h;\beta}[g_1](z)\prec\mathrm{I}_{h;\beta}[f](z)\prec \mathrm{I}_{h;\beta}[g_2](z),$$ where the symbol ``$\prec$'' stands for subordination. We will call such a kind of result a {\em sandwich-type theorem}. In addition, $\displaystyle\mathrm{I}_{h;\beta}[g_1]$ will be the {\em largest} function and $\displaystyle\mathrm{I}_{h;\beta}[g_2]$ the {\em smallest} function so that the left-hand side, respectively the right-hand side of the above implication hold, for all $f$ functions satisfying the differential subordination, respectively the differential superordination of the assumption. We will give some particular cases of the main result obtained for appropriate choices of the $h$, that also generalize classic results of the theory of differential subordination and superordination. The concept of differential superordination was introduced by S. S. Miller and P. T. Mocanu like a dual problem of differential subordination
Publié le : 2006-09-14
Classification:  Differential subordination,  univalent function,  starlike function,  integral operator,  30C80,  30C25,  30C45
@article{1161350695,
     author = {Bulboac\u a, Teodor},
     title = {Sandwich-type theorems for a class
of integral operators},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {12},
     number = {5},
     year = {2006},
     pages = { 537-550},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/1161350695}
}
Bulboacă, Teodor. Sandwich-type theorems for a class
of integral operators. Bull. Belg. Math. Soc. Simon Stevin, Tome 12 (2006) no. 5, pp.  537-550. http://gdmltest.u-ga.fr/item/1161350695/