A property of group laws
Li, Qianlu
Bull. Belg. Math. Soc. Simon Stevin, Tome 12 (2006) no. 5, p. 513-519 / Harvested from Project Euclid
For a word in $n$ letters, in [1] the author introduced a notion: \emph{its standard exponent} and proved that the variety of residually finite groups defined by a word is almost nilpotent if and only if the standard exponent of this word is 1. In this paper we obtain the following result: let $\omega(x_1, \cdots, x_n)$ denote a word in $x_1, \cdots, x_n$. Then both $\omega(x_1, \cdots, x_n)$ and $\omega(x^{m_1}_1, \cdots, x^{m_n}_n)$, where $m_i$ are natural numbers, have the same standard exponents.
Publié le : 2006-09-14
Classification:  word,  standard exponent,  almost nilpotent,  20F10,  20E10
@article{1161350692,
     author = {Li, Qianlu},
     title = {A property of group laws},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {12},
     number = {5},
     year = {2006},
     pages = { 513-519},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1161350692}
}
Li, Qianlu. A property of group laws. Bull. Belg. Math. Soc. Simon Stevin, Tome 12 (2006) no. 5, pp.  513-519. http://gdmltest.u-ga.fr/item/1161350692/