Improvement on the Bound of Intransitive Permutation Groups with Bounded Movement
Alaeiyan, Mehdi ; Tavallaee, Hamid A.
Bull. Belg. Math. Soc. Simon Stevin, Tome 12 (2006) no. 5, p. 471-477 / Harvested from Project Euclid
Let $G$ be a permutation group on a set $\Omega$ with no fixed points in $\Omega$ and let $m$ be a positive integer. Then we define the movement of $G$ as, $m:=move(G):=sup_{\Gamma}\{|\Gamma^{g}\setminus\Gamma | | g\in G\}$. Let $p$ be a prime, $p\geq 5$, and let $move(G)=m$. We show that if $G$ is not a 2-group and $p$ is the least odd prime dividing $|G|$, then $n:=|\Omega|\leq 4m-p$. Moreover for an infinite family of groups the maximum bound $n=4m-p$ is attained.
Publié le : 2006-09-14
Classification:  Permutation group,  Bounded movement,  Transitive,  Cycle,  Semi-direct product,  20B05
@article{1161350688,
     author = {Alaeiyan, Mehdi and Tavallaee, Hamid A.},
     title = {Improvement on the Bound of Intransitive Permutation Groups with Bounded
Movement},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {12},
     number = {5},
     year = {2006},
     pages = { 471-477},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1161350688}
}
Alaeiyan, Mehdi; Tavallaee, Hamid A. Improvement on the Bound of Intransitive Permutation Groups with Bounded
Movement. Bull. Belg. Math. Soc. Simon Stevin, Tome 12 (2006) no. 5, pp.  471-477. http://gdmltest.u-ga.fr/item/1161350688/