Optimal energy decay rate for Rayleigh beam equation with dynamical boundary controls
Wehbe, Ali
Bull. Belg. Math. Soc. Simon Stevin, Tome 12 (2006) no. 5, p. 385-400 / Harvested from Project Euclid
We consider a Rayleigh beam equation with two dynamical boundary controls. First, by a multiplier method, we show that the smooth solution has a polynomial energy decay rate. Next, using a spectrum method, we justify that the polynomial energy decay rate is optimal.
Publié le : 2006-09-14
Classification:  dynamical control,  compact perturbation,  multiplier method,  Riesz basis,  optimal energy decay rate,  35B35,  35B40,  93C15,  93D15
@article{1161350682,
     author = {Wehbe, Ali},
     title = {Optimal energy decay rate for Rayleigh beam equation with dynamical boundary controls},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {12},
     number = {5},
     year = {2006},
     pages = { 385-400},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1161350682}
}
Wehbe, Ali. Optimal energy decay rate for Rayleigh beam equation with dynamical boundary controls. Bull. Belg. Math. Soc. Simon Stevin, Tome 12 (2006) no. 5, pp.  385-400. http://gdmltest.u-ga.fr/item/1161350682/