Global wellposedness of KdV in $H^{-1}({\mathbb T},{\mathbb R})$
Kappeler, T. ; Topalov, P.
Duke Math. J., Tome 131 (2006) no. 1, p. 327-360 / Harvested from Project Euclid
By the inverse method we show that the Korteweg–de Vries equation (KdV) $\partial_t v(x,t)=-\partial_x^3 v(x,t) + 6v(x,t)\partial_x v(x,t)$ $(x\in{\mathbb T},t\in{\mathbb R})$ is globally (in time) wellposed in the Sobolev space of distributions $H^{\beta}({\mathbb T},{\mathbb R})$ for any $\beta\ge -1$
Publié le : 2006-11-01
Classification:  35Q53,  35G25,  35D05
@article{1161093267,
     author = {Kappeler, T. and Topalov, P.},
     title = {Global wellposedness of KdV in $H^{-1}({\mathbb T},{\mathbb R})$},
     journal = {Duke Math. J.},
     volume = {131},
     number = {1},
     year = {2006},
     pages = { 327-360},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1161093267}
}
Kappeler, T.; Topalov, P. Global wellposedness of KdV in $H^{-1}({\mathbb T},{\mathbb R})$. Duke Math. J., Tome 131 (2006) no. 1, pp.  327-360. http://gdmltest.u-ga.fr/item/1161093267/