Weierstrass-type representation for harmonic maps into general symmetric spaces via loop groups
BALAN, Vladimir ; DORFMEISTER, Josef
J. Math. Soc. Japan, Tome 57 (2005) no. 4, p. 69-94 / Harvested from Project Euclid
In [19] a method was presented, which constructs via loop group splittings all harmonic maps into a compact symmetric space. The present paper generalizes this method to all spaces $G/K$ , where $G$ is an arbitrary Lie group (semisimple or not) and $K$ is the fixpoint group of some involution of $G$ . The method is illustrated by a number of examples.
Publié le : 2005-01-14
Classification:  harmonic map,  finite type harmonic map,  symmetric space,  Maurer-Cartan form,  Birkhoff splitting,  Iwasawa splitting,  affine connection,  loop group,  tangent group,  potential,  58E20,  53C43,  22E67,  30F15
@article{1160745814,
     author = {BALAN, Vladimir and DORFMEISTER, Josef},
     title = {Weierstrass-type representation for harmonic maps into general symmetric spaces via loop groups},
     journal = {J. Math. Soc. Japan},
     volume = {57},
     number = {4},
     year = {2005},
     pages = { 69-94},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1160745814}
}
BALAN, Vladimir; DORFMEISTER, Josef. Weierstrass-type representation for harmonic maps into general symmetric spaces via loop groups. J. Math. Soc. Japan, Tome 57 (2005) no. 4, pp.  69-94. http://gdmltest.u-ga.fr/item/1160745814/