On the variational distance of two trees
Steel, M. A. ; Székely, L. A.
Ann. Appl. Probab., Tome 16 (2006) no. 1, p. 1563-1575 / Harvested from Project Euclid
A widely studied model for generating sequences is to “evolve” them on a tree according to a symmetric Markov process. We prove that model trees tend to be maximally “far apart” in terms of variational distance.
Publié le : 2006-08-14
Classification:  Cavender–Farris–Neyman model,  symmetric binary channel,  tree-based Markov process,  Yule–Harding distribution,  phylogeny reconstruction,  sequence evolution,  q-state Potts model,  Jukes–Cantor model,  variational distance,  62P10,  05C05,  05C80,  05C90,  92D15
@article{1159804991,
     author = {Steel, M. A. and Sz\'ekely, L. A.},
     title = {On the variational distance of two trees},
     journal = {Ann. Appl. Probab.},
     volume = {16},
     number = {1},
     year = {2006},
     pages = { 1563-1575},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1159804991}
}
Steel, M. A.; Székely, L. A. On the variational distance of two trees. Ann. Appl. Probab., Tome 16 (2006) no. 1, pp.  1563-1575. http://gdmltest.u-ga.fr/item/1159804991/