A unique extremal metric for the least eigenvalue of the Laplacian on the Klein bottle
El Soufi, Ahmad ; Giacomini, Hector ; Jazar, Mustapha
Duke Math. J., Tome 131 (2006) no. 1, p. 181-202 / Harvested from Project Euclid
We prove the following conjecture recently formulated by Jakobson, Nadirashvili, and Polterovich (see [15, Conjecture 1.5, page 383]). On the Klein bottle $\mathbb{K}$ , the metric of revolution $g_0={9+ (1+8\cos^2v)^2\over 1+8\cos^2v} \Big(du^2 + {dv^2\over 1+8\cos^2v}\Big),$ $0\le u\textless\pi/2$ , $0\le v\textless\pi$ , is the unique extremal metric of the first eigenvalue of the Laplacian viewed as a functional on the space of all Riemannian metrics of given area. The proof leads us to study a Hamiltonian dynamical system that turns out to be completely integrable by quadratures
Publié le : 2006-10-01
Classification:  58J50,  58E11,  35P15,  37C27
@article{1159281066,
     author = {El Soufi, Ahmad and Giacomini, Hector and Jazar, Mustapha},
     title = {A unique extremal metric for the least eigenvalue of the Laplacian on the Klein bottle},
     journal = {Duke Math. J.},
     volume = {131},
     number = {1},
     year = {2006},
     pages = { 181-202},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1159281066}
}
El Soufi, Ahmad; Giacomini, Hector; Jazar, Mustapha. A unique extremal metric for the least eigenvalue of the Laplacian on the Klein bottle. Duke Math. J., Tome 131 (2006) no. 1, pp.  181-202. http://gdmltest.u-ga.fr/item/1159281066/