$BC_n$ -symmetric abelian functions
Rains, Eric M.
Duke Math. J., Tome 131 (2006) no. 1, p. 99-180 / Harvested from Project Euclid
We construct a family of $BC_n$ -symmetric biorthogonal abelian functions generalizing Koornwinder's orthogonal polynomials (see [10]) and prove a number of their properties, most notably analogues of Macdonald's conjectures. The construction is based on a direct construction for a special case generalizing Okounkov's interpolation polynomials (see [13]). We show that these interpolation functions satisfy a collection of generalized hypergeometric identities, including new multivariate elliptic analogues of Jackson's summation and Bailey's transformation
Publié le : 2006-10-01
Classification:  33D52,  14H52,  14K25
@article{1159281065,
     author = {Rains, Eric M.},
     title = {$BC\_n$ -symmetric abelian functions},
     journal = {Duke Math. J.},
     volume = {131},
     number = {1},
     year = {2006},
     pages = { 99-180},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1159281065}
}
Rains, Eric M. $BC_n$ -symmetric abelian functions. Duke Math. J., Tome 131 (2006) no. 1, pp.  99-180. http://gdmltest.u-ga.fr/item/1159281065/