The converse of isovariant Borsuk-Ulam results for some abelian groups
Nagasaki, Ikumitsu
Osaka J. Math., Tome 43 (2006) no. 2, p. 689-710 / Harvested from Project Euclid
The isovariant Borsuk-Ulam theorem provides nonexistence results on isovariant maps between representations. In this paper we shall deal with the existence problem of isovariant maps as a converse to the isovariant Borsuk-Ulam theorem, and show that the converse holds for representations of an abelian $p$-group or a cyclic groups of order $p^{n}q^{m}$ or $pqr$, where $p,q,r$ are distinct primes.
Publié le : 2006-09-14
Classification:  57S17,  55M20
@article{1159190009,
     author = {Nagasaki, Ikumitsu},
     title = {The converse of isovariant Borsuk-Ulam results for some abelian groups},
     journal = {Osaka J. Math.},
     volume = {43},
     number = {2},
     year = {2006},
     pages = { 689-710},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1159190009}
}
Nagasaki, Ikumitsu. The converse of isovariant Borsuk-Ulam results for some abelian groups. Osaka J. Math., Tome 43 (2006) no. 2, pp.  689-710. http://gdmltest.u-ga.fr/item/1159190009/