Euler hydrodynamics of one-dimensional attractive particle systems
Bahadoran, C. ; Guiol, H. ; Ravishankar, K. ; Saada, E.
Ann. Probab., Tome 34 (2006) no. 1, p. 1339-1369 / Harvested from Project Euclid
We consider attractive irreducible conservative particle systems on ℤ, without necessarily nearest-neighbor jumps or explicit invariant measures. We prove that for such systems, the hydrodynamic limit under Euler time scaling exists and is given by the entropy solution to some scalar conservation law with Lipschitz-continuous flux. Our approach is a generalization of Bahadoran et al. [Stochastic Process. Appl. 99 (2002) 1–30], from which we relax the assumption that the process has explicit invariant measures.
Publié le : 2006-07-14
Classification:  Hydrodynamics,  attractive particle system,  nonexplicit invariant measures,  nonconvex or nonconcave flux,  entropy solution,  Glimm scheme,  60K35,  82C22
@article{1158673321,
     author = {Bahadoran, C. and Guiol, H. and Ravishankar, K. and Saada, E.},
     title = {Euler hydrodynamics of one-dimensional attractive particle systems},
     journal = {Ann. Probab.},
     volume = {34},
     number = {1},
     year = {2006},
     pages = { 1339-1369},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1158673321}
}
Bahadoran, C.; Guiol, H.; Ravishankar, K.; Saada, E. Euler hydrodynamics of one-dimensional attractive particle systems. Ann. Probab., Tome 34 (2006) no. 1, pp.  1339-1369. http://gdmltest.u-ga.fr/item/1158673321/