Hyperspaces with the Hausdorff Metric and Uniform ANR's
KURIHARA, Masayuki ; SAKAI, Katsuro ; YAGUCHI, Masato
J. Math. Soc. Japan, Tome 57 (2005) no. 4, p. 523-535 / Harvested from Project Euclid
For a metric space $X = (X,d)$ ,let $\mathrm{Cld}_H(X)$ be the space of all nonempty closed sets in $X$ with the topology induced by the Hausdorff extended metric: $$d_H(A,B) = \max\bigg\{\sup_{x\in B}d(x,A),\sup_{x\in A}d(x,B)\bigg\} \in [0,\infty].$$ On each component of $\mathrm{Cld}_H(X)$ , $d_H$ is a metric (i.e., $d_H(A,B) < \infty$ ). In this paper, we give a condition on $X$ such that each component of $\mathrm{Cld}_H(X)$ is a uniform AR (in the sense of E. Michael). For a totally bounded metric space $X$ , in order that $\mathrm{Cld}_H(X)$ is a uniform ANR,a necessary and sufficient condition is also given. Moreover, we discuss the subspace $\mathrm{Dis}_H(X)$ of $\mathrm{Cld}_H(X)$ consisting of all discrete sets in $X$ and give a condition on $X$ such that each component of $\mathrm{Dis}_H(X)$ is a uniform AR and $\mathrm{Dis}_H(X)$ is homotopy dense in $\mathrm{Cld}_H(X)$ .
Publié le : 2005-04-14
Classification:  hyperspace of closed sets,  Hausdorff metric,  uniform AR,  uniform ANR,  uniformly locally $C^*$-connected,  almost convex,  C-connected,  Lawson semilattice,  54B20,  54C55
@article{1158242069,
     author = {KURIHARA, Masayuki and SAKAI, Katsuro and YAGUCHI, Masato},
     title = {Hyperspaces with the Hausdorff Metric and Uniform ANR's},
     journal = {J. Math. Soc. Japan},
     volume = {57},
     number = {4},
     year = {2005},
     pages = { 523-535},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1158242069}
}
KURIHARA, Masayuki; SAKAI, Katsuro; YAGUCHI, Masato. Hyperspaces with the Hausdorff Metric and Uniform ANR's. J. Math. Soc. Japan, Tome 57 (2005) no. 4, pp.  523-535. http://gdmltest.u-ga.fr/item/1158242069/